Wednesday, October 24, 2012

Final Arduino Code (very commented too)


long Hxv[4]; // these arrays are used in the digital filter
long Hyv[4]; // H for highpass, L for lowpass
long Lxv[4];
long Lyv[4];

unsigned long readings; // used to help normalize the signal
unsigned long peakTime; // used to time the start of the heart pulse
unsigned long lastPeakTime = 0;// used to find the time between beats
volatile int Peak;     // used to locate the highest point in positive phase of heart beat waveform
int rate;              // used to help determine pulse rate
volatile int BPM;      // used to hold the pulse rate
int offset = 0;        // used to normalize the raw data
int sampleCounter;     // used to determine pulse timing
int beatCounter = 1;   // used to keep track of pulses
volatile int Signal;   // holds the incoming raw data
int NSignal;           // holds the normalized signal
volatile int FSignal;  // holds result of the bandpass filter
volatile int HRV;      // holds the time between beats
volatile int Scale = 13;  // used to scale the result of the digital filter. range 12<>20 : high<>low amplification
volatile int Fade = 0;

boolean first = true; // reminds us to seed the filter on the first go
volatile boolean Pulse = false;  // becomes true when there is a heart pulse
volatile boolean B = false;     // becomes true when there is a heart pulse
volatile boolean QS = false;      // becomes true when pulse rate is determined. every 20 pulses

int pulsePin = 0;  // pulse sensor purple wire connected to analog pin 0


void setup(){
pinMode(13,OUTPUT);    // pin 13 will blink to your heartbeat!
Serial.begin(115200); // we agree to talk fast!
// this next bit will wind up in the library. it initializes Timer1 to throw an interrupt every 1mS.
TCCR1A = 0x00; // DISABLE OUTPUTS AND BREAK PWM ON DIGITAL PINS 9 & 10
TCCR1B = 0x11; // GO INTO 'PHASE AND FREQUENCY CORRECT' MODE, NO PRESCALER
TCCR1C = 0x00; // DON'T FORCE COMPARE
TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1)
ICR1 = 8000;   // TRIGGER TIMER INTERRUPT EVERY 1mS
sei();         // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED

}



void loop(){
  Serial.print("S");          // S tells processing that the following string is sensor data
  Serial.println(Signal);     // Signal holds the latest raw Pulse Sensor signal
  if (B == true){             //  B is true when arduino finds the heart beat
    Serial.print("B");        // 'B' tells Processing the following string is HRV data (time between beats in mS)
    Serial.println(HRV);      //  HRV holds the time between this pulse and the last pulse in mS
    B = false;                // reseting the QS for next time
  }
  if (QS == true){            //  QS is true when arduino derives the heart rate by averaging HRV over 20 beats
    Serial.print("Q");        //  'QS' tells Processing that the following string is heart rate data
    Serial.println(BPM);      //  BPM holds the heart rate in beats per minute
    QS = false;               //  reset the B for next time
  }
  Fade -= 15;
  Fade = constrain(Fade,0,255);
  analogWrite(11,Fade);
 
delay(20);                    //  take a break

}

// THIS IS THE TIMER 1 INTERRUPT SERVICE ROUTINE. IT WILL BE PUT INTO THE LIBRARY
ISR(TIMER1_OVF_vect){ // triggered every time Timer 1 overflows
// Timer 1 makes sure that we take a reading every milisecond
Signal = analogRead(pulsePin);

// First normailize the waveform around 0
readings += Signal; // take a running total
sampleCounter++;     // we do this every milisecond. this timer is used as a clock
if ((sampleCounter %300) == 0){   // adjust as needed
  offset = readings / 300;        // average the running total
  readings = 0;                   // reset running total
}
NSignal = Signal - offset;        // normalizing here

// IF IT'S THE FIRST TIME THROUGH THE SKETCH, SEED THE FILTER WITH CURRENT DATA
if (first = true){
  for (int i=0; i<4; i++){
    Lxv[i] = Lyv[i] = NSignal <<10;  // seed the lowpass filter
    Hxv[i] = Hyv[i] = NSignal <<10;  // seed the highpass filter
  }
first = false;      // only seed once please
}
// THIS IS THE BANDPAS FILTER. GENERATED AT www-users.cs.york.ac.uk/~fisher/mkfilter/trad.html
//  BUTTERWORTH LOWPASS ORDER = 3; SAMPLERATE = 1mS; CORNER = 5Hz
    Lxv[0] = Lxv[1]; Lxv[1] = Lxv[2]; Lxv[2] = Lxv[3];
    Lxv[3] = NSignal<<10;    // insert the normalized data into the lowpass filter
    Lyv[0] = Lyv[1]; Lyv[1] = Lyv[2]; Lyv[2] = Lyv[3];
    Lyv[3] = (Lxv[0] + Lxv[3]) + 3 * (Lxv[1] + Lxv[2])
          + (3846 * Lyv[0]) + (-11781 * Lyv[1]) + (12031 * Lyv[2]);
//  Butterworth; Highpass; Order = 3; Sample Rate = 1mS; Corner = .8Hz
    Hxv[0] = Hxv[1]; Hxv[1] = Hxv[2]; Hxv[2] = Hxv[3];
    Hxv[3] = Lyv[3] / 4116; // insert lowpass result into highpass filter
    Hyv[0] = Hyv[1]; Hyv[1] = Hyv[2]; Hyv[2] = Hyv[3];
    Hyv[3] = (Hxv[3]-Hxv[0]) + 3 * (Hxv[1] - Hxv[2])
          + (8110 * Hyv[0]) + (-12206 * Hyv[1]) + (12031 * Hyv[2]);
FSignal = Hyv[3] >> Scale;  // result of highpass shift-scaled

//PLAY AROUND WITH THE SHIFT VALUE TO SCALE THE OUTPUT ~12 <> ~20 = High <> Low Amplification.

if (FSignal >= Peak && Pulse == false){  // heart beat causes ADC readings to surge down in value.
  Peak = FSignal;                        // finding the moment when the downward pulse starts
  peakTime = sampleCounter;              // recodrd the time to derive HRV.
}
//  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
if ((sampleCounter %20) == 0){// only look for the beat every 20mS. This clears out alot of high frequency noise.
  if (FSignal < 0 && Pulse == false){  // signal surges down in value every time there is a pulse
     Pulse = true;                     // Pulse will stay true as long as pulse signal < 0
     digitalWrite(13,HIGH);            // pin 13 will stay high as long as pulse signal < 0
     Fade = 255;                       // set the fade value to highest for fading LED on pin 11 (optional)  
     HRV = peakTime - lastPeakTime;    // measure time between beats
     lastPeakTime = peakTime;          // keep track of time for next pulse
     B = true;                         // set the Quantified Self flag when HRV gets updated. NOT cleared inside this ISR    
     rate += HRV;                      // add to the running total of HRV used to determine heart rate
     beatCounter++;                     // beatCounter times when to calculate bpm by averaging the beat time values
     if (beatCounter == 10){            // derive heart rate every 10 beats. adjust as needed
       rate /= beatCounter;             // averaging time between beats
       BPM = 60000/rate;                // how many beats can fit into a minute?
       beatCounter = 0;                 // reset counter
       rate = 0;                        // reset running total
       QS = true;                       // set Beat flag when BPM gets updated. NOT cleared inside this ISR
     }
  }
  if (FSignal > 0 && Pulse == true){    // when the values are going up, it's the time between beats
    digitalWrite(13,LOW);               // so turn off the pin 13 LED
    Pulse = false;                      // reset these variables so we can do it again!
    Peak = 0;                           //
  }
}

}// end isr




No comments:

Post a Comment